緒 説

炭水化物水酸基の相対的反応性について（その II）*
—ベントースの選択的エステル化反応を中心に—

近 藤 陽太郎

Relative Reactivities of Hydroxyl Groups in Carbohydrates（Part II）

Yōtarō Kondo

I. はじめに

炭水化物の有機反応の多くは、反応試薬と炭水化物中の水酸基との有機反応であり、それ理解する上で、炭水化物の水酸基の有機化学的性質と炭水化物の立体化学に対する知識が必要である。一般的に有機分子の反応性や同一種類の官能基間の反応性の違いは、静電的および立体的な因子を考慮することで理論的説明がなされてきた。このことは、すでに緒説（その I）1)で述べたように、糖類におけ

る水酸基の反応性の違いを考える上でも重要である。

先の緒説では、立体配座が椅子型に固定されているビラノース環（六員環）を持つヘキソース（六炭糖）誘導体（1.1）について論じたが、ここでは、

ビラノース環を持つベントース（五炭糖）誘導体（1.2）の選択的エステル化反応について論ずる。この

ベントースは C-6 位に高々 hydroxymethyl 基（-CH₂OH）を持たず、そのためヘキソースと比べて、分子内における立体的な障害はかなり低いと考えられている。それ故、二級水酸基同志の反応性の相異や C-1 位のアグリコンの反応に及ぼす影響を比較検討する上で、よいモデルとなると考えられる。

糖類水酸基に対するエステル化試薬としては、代表的な methanesulfonfyl chloride (1.3), p-tolu

enesulfonfyl chloride (1.4) と benzoyl chloride (1.5) の 3 種のエステル化試薬を、エステル化の溶媒としては、汎用されるピリジンを選び、ベントース誘導体の反応性に及ぼす静電的および立体的因子について詳しく述べることにする。

京都女子大学家政学部食糧学科食品学第二研究室
II. 1,5-無水環をもつ糖アルコールのエステル化

1. 1,5-アンヒドロキシリトールのエステル化

糖類水酸基の反応性を論ずるのに、配糖体部分（C-1位のアグリコン）の有電子のおよび立体的な影響に対する考察が重要である。そこで、アグリコンをもたない1,5-無水環をもつ糖アルコールを反応モデルに選ぶと、アグリコンの有無による反応性に対する影響を比較検討することができる。1,5-アンヒドロキシリトール（2.1）は C-1 コンフォメーションを取り、ピラノース環をもったペンディトール（五炭糖アルコール）で、C-1 位にアグリコンを持たず、分子内のすべての二級水酸基が equatorial 配向を取り axial 配向した官能基を含まないので、他のペンテース誘導体と比較して、最も立体障害の少ない構造を取る化合物であると考えられる。分子内対称軸を持つので、光学不活性であり、その構造からも分かるように、C-2 と C-4 位の水酸基は化学的にも立体化学的にも等価である。二級水酸基の内で C-3 位の水酸基に対しては隣接に 2 つの水酸基が存在するため、gauche 相互作用の存在が考えられ、この水酸基は最も立体障害の程度が高いと考えられる。C-2 や C-4 の水酸基は隣接に 1 つの水酸基と 1 つの methylene 基 (-CH₂-) が存在するので、1 つの HO--H gauche 相互作用と 3 つの HO--H gauche 相互作用が存在するが、C-3 位の水酸基には、2 つの HO--HO gauche 相互作用と 2 つの HO--H gauche 相互作用が存在する。それ故、C-3 の水酸基は HO--HO gauche 相互作用と HO--H gauche 相互作用の差分だけ C-2 や C-4 の水酸基に比べ、立体障害の程度が高いものと考えられる。

1,5-アンヒドロキシリトール（2.1）と 1 モル当量のベンゾイルクロリドをピリジン中、-40℃で反応させると、2,3,4-トリペンゾエート（2.2, 1.6%）、2,4-ジペンゾエート（2.3, 14.5%）、2,3-ジペンゾエート（2.4, 30.1%）、3-ペンゾエート（2.5, 16.6%）、2-ペンゾエート（2.6, 37.2%）が生成する。2,4-ジペンゾエート、2,3-ジペンゾエートと3-ペンゾエートの比率はどちらも約 1:2 であることが分かる。この結果は、C-2
（C-4）位の水酸基のベンゾイルクロリドに対する反応性がC-3位の水酸基に対するものと等しいことを利用している。何故ならHO-2とHO-4は等価であるので、その数は4個、HO-3の数は2個と数えるからその比は2:1となるからである。そこで、1,5-アソヒドロキシシシトールにおける水酸基のベンゾイル化の場合には、C-2（C-4）位に立体障害の低い水酸基があるにもかかわらず、水酸基の相対的反応性的順序は、HO-2（HO-4）＝HO-3となり、反応速度は立体的な因子に支配され難いことが分かる。
一方、1,5-アソヒドロキシシシトール（2.1）と2
モル当量のp-トルエンスルホニルクロリドとの0℃における反応3)では、2,3,4-トリスルホニルエート（2,7,24.8％）、2,4-ジスルホニルエート（2,8,69.1％）、2,3-ジスルホニルエート（2,9、3.3％）、2-
スルホニルエート（2,10、2.8％）が生成する。この
結果は、スルホニル化反応に対し、1,5-アソヒド
ロキシシシトールの水酸基の反応性の順序は、HO-2
（HO-4）＞HO-3であることを示しており、p-トル
エンスルホニルクロリドによるエラチオ化反応で
は、ベンゾイルクロリドのそれと異なり、立体的な
因子に左され易く、立体的に込み合った状態にある
水酸基の反応性は低くなり、立体的な障害の少
ない水酸基の反応速度が早くなることを示している。
しかし、2,4-ジスルホニルエートがさらにスルホニ
ルエートと反応的に得られる2,3,4-トリスルホニルエートの
収率がさほど低いものではないので、この場合、C-
3位の水酸基に隣接するC-2（C-4）位のスルホ
ニルエートは、立体障害を引き起こし、C-3位の水
酸基の反応性を低下させる要因とはならないものと
考えられる。

2. 1,5-アソヒドロアラビニトールのエステル化
1,5-アソヒドロアラビニトール（2.11）は、
1,5-アソヒドロキシシシトール（2.1）と同じく閉環
構造をした糖アルコールで、C-1位にアグリコンを持たず、C-2とC-3の二級水酸基がequatorial配
向を取り、C-4の水酸基がaxial配向しているので、
ビラノース環ももベンソートール誘導体中を二級axi-
al水酸基が反応性に及ぼす立体的および静電的
因子を比較できるよいモデルとなる。

1,5-アソヒドロキシシシトール（2.11）と2
モル当量のベンゾイルクロリドを反応4)させると、
2,3,4-トリベンゾエート（2.12、25％）、2,4-ジベン
ゾエート（2.13、4％）、2,3-ジベンゾエート（2.
14、20％）、3,4ジベンゾエート（2.15、44％）、3-
ベンゾエート（2.16）と4-ベンゾエート（2.17）
の混合物（7％）を得る。収率を比較してみると、
2モル反応では2,3-ジベンゾエートが最も高い44％
の収率で得られ、次いで2,4-ジベンゾエートの収率
が2,4-ジベンゾエートの収率より高いことから、2
モノベンツイ化反応での相対的反応性の順序は、
HO-3＞HO-4＞HO-2であると考えられる。1,5-
アソヒドロアラビニトール（2.11）を1モル当量の
ベンゾイルクロリドと反応4)させると、2,4-ジベ
ンゾエート（2.13）、2,3-ジベンゾエート（2.14）
、3,4ジベンゾエート（2.15）の混合物（30％）、2-
ベンゾエート（2.18、7％）、3-ペンゾエート（2.

\[\begin{align*}
 \text{HO} & \quad \text{O} \\
 & \quad \text{OH} \\
 \text{OTs} & \quad \text{OTs} \\
 \text{OTs} & \quad \text{OTs}
\end{align*} \]

\[\begin{align*}
 \text{OTs} & \quad \text{OTs} \\
 \text{OH} & \quad \text{OTs} \\
 \text{OTs} & \quad \text{OTs}
\end{align*} \]
16.52％）、4-ペンゾエート（2.17、11％）が生成する。この結果は、先の1-ペルペンゾイル化反応で、3-ペンゾエートの収率が52％と最も高く、4-ペンゾエートの収率が2-ペンゾエートの収率を僅かではあるが上回るのと、1-ペルペンゾイル化反応においても、反応性の順序は同じであり、HO-3＞HO-4＞HO-2であると考えられる。C-3位の水酸基の最も高い反応性は、C-4位のaxial水酸基とC-3位のequatorial水酸基間の分子内水素結合により、C-3位の水酸基が活性化される結果であると説明することができる。C-4位の水酸基はaxial配向しているため、C-2位のequatorial水酸基より立体的に（gauche相互作用により）不利であり、C-2位の水酸基より反応性に乏しいと推定されるので、逆の結果が得られたのは、C-4位の水酸基もC-3位のequatorial水酸基間の分子内水素結合をしていないため、C-4位の水酸基が活性化されるためであると考えられる。それ故、このことは水酸基の配向にかかわらず、水素結合に関与する水酸基の反応性が高いことを示している。しかし、その活性化される程度は、水酸基の配向の違いで異なり、axial水酸基＞equatorial水酸基の関係にあると考えられる。

一方、1.5-アンヒドロラビニトール（2.11）と2-トルエンスルフォニルクロリドとの反応3）では、2,3-ジスルフォネート（2.19、17.0％）、2,4-ジスルフォネート（2.20、31.5％）、2,3-ジスルフォネート（2.21、再結晶化後収率換算：12.4％）と3,4-ジスルフォネート（2.22、再結晶化後収率換算：26.4％）の混合物（38.8％）、2-スルフォネート（2.23、0.2％）、3-スルフォネート（2.24、5.0％）、4-スルフォネート（2.25、7.5％）が生成する。2,4-ジスルフォネートと3,4-ジスルフォネートが主生成物であり、2-ジスルフォネート＋3,4-ジスルフォネートの収率より多いことから、2-スルフォニル化反応に対する1-スルフォニル化反応の順序はHO-4＞HO-2＞HO-3であると考えられる。1-トルエンスルフォニルクロリドとの反応3）では、2,4-ジスルフォネート（2.20、16.6％）、2,3-ジスルフォネート（2.21）と3,4-ジスルフォネート（2.22）の混合物（15.5％）、2-スルフォネート（2.23、12.7％）、3-スルフォネート（2.24、23.0％）、4-スルフォネート（2.25、32.8％）を得る。モノスルフォネートの内、4-スルフォネートの収率が最も高くて、次いで3-スルフォネートが得られるので、1-トルエンスルフォニル化反応での水酸基の相対的反応性の順序は、2-スルフォニル反応と異なり、HO-4＞HO-3＞HO-2であることを示している。1.5-アンヒドロラビニトールの水酸基の中で、C-4位の水酸基が2-トルエンスルフォニル化、1-トルエンスルフォニル化、最も高い反応性を示したが、これは、IIで述べたように、2-トルエンスルフォニル化が立体障害の少ない（体側に込む合った状態に）水酸基に対して行われ易いという結果と一致するものである。また、C-4位の
axial水酸基とC-3位のequatorial水酸基間の分子内水素結合が存在するため，C-4位の水酸基は活性化され，反応性がさらに増加するため，C-3位の水酸基がequatorial配向しているにもかかわらず，最も反応性の高い結果が得られるものと考えられる。立体的に有利ではあるが，分子内水素結合に参加していないC-2位のequatorial水酸基は，1モル反応において，最も反応性を示すが，これはメチレン基の存在による立体障害の低減による著接水酸基への反応性の増加分より，分子内水素結合が水酸基の活性化に及ぼす影響の方が強く現われるからであると思われる。一方，2モル反応におけるHO-2とHO-3のスルフォニル化の速度の違いを調えるために4-スルフォニルエステルに対する1-スルフォニル化反応を行い，その結果をみると，生成した2,4-ジスルフォニルエステルと3,4-ジスルフォニルエステルの比は14:17であり，HO-3の反応性がHO-2のそれより僅かに高く，その差が小さくなることが分かる。このことはC-4位のaxial配向したp-トルエンスルフォニル基が，equatorial配向したそれと違って，著接のC-3位の水酸基に対して立体障害とならないことを示している。2-スルフォニル基の1モルスルフォニル化では，生成した2,4-ジスルフォニルエステルと2,3-ジスルフォニルエステルの比は17:5であり，HO-4の反応性がHO-3のそれよりかなり高いことが分かる。これはHO-4の反応性がC-5のメチレン基の存在による立体障害の低減と分子内水素結合の存在により活性化されるためであろう。
の収率より僅かに多いので、ジスルフォネートの収率予測は、2,4-ジスルフォネート > 3,4-ジスルフォ
ネート > 2,3-ジスルフォネートとなり、先の2モル
反応の実験結果のそれと一致する。このときの2段
階目の相対的反応性の順序は、1モル反応のそれに
同じ HO-4 > HO-3 > HO-2 となる。このように
相対的反応性の順が1モル反応の場合と2モル反
応の場合とで異なる結果が得られるようなときは、
エステル反応の第1段階（1置換体の生成）、第
2段階（2置換体の生成）や第3段階（3置換体の
生成）など各段階の反応速度を考慮する必要があ
る。

III. ピラノース環をもつペントース配糖体
のエステル化

1. D-キシロース配糖体のエステル化

ビラノース環を持つD-キシロースおよびその配
糖体は、C-1コンフォメーションを取り、全ての二
級水酸基はequatorial配向をしているので、ペン
トースの中では最も立体障害が少ないものと考えら
れている。

ベンジルα-D-キシロピラノノド（3.1）の選択的
1モルペンゾイアル化反応7) では、主生成物として
2-ペンゾエート（3.5, 59%）を与え、2モルペン
ゾイアル化反応8) では、2,3,4-トリペンゾエート（3.
2, 15%), 2,4-ジペンゾエート（3.3, 45%), 2,3-
ジペンゾエート（3.4, 27%), 2-ペンゾエート（3.
5, 9%）を生成する。メチルα-D-キシロピラノ

D (3.6) の選択的2モルペンゾイアル化反応7) では、
2,3,4-トリペンゾエート（3.7, 11%), 2,4-ジペン
ゾエート（3.8, 45%), 2,3-ジペンゾエート（3.9,
39%), 2-ペンゾエート（3.10, 5%）が生成し、
ベンジル配糖体の場合とよく似た結果が得られる。
これらの結果より、D-キシロースのα配糖体にお
ける二級水酸基のペンゾイルクリロリドに対する相対
的反応性の順序は、HO-2 > HO-4 > HO-3 である
と考えられる。1,5-アヒドロキシルトールについ
てIIで述べたように、ペンゾイルクリロリドに
よるペンゾイール化では、C-5位のメチレン基による
立体障害の低減と疎水性の増加がC-4位の水酸基
の反応性に対して直接的に影響を及ぼすことはない
と考えられることから、HO-4がHO-3の反応性
より高いという結果が得られるのは、メチルα-D-
キシロピラノノドは1,5-アヒドロキシルトールと
構造的に異なる点はC-1位のメチル基の存在だけ
なので、HO-4の反応性が増加するというよりは
HO-3の反応性がC-1位のアクリロンの立体的あ
る静電子的な影響を受け、低下するものと考えら
れる。HO-2の反応性が他の二級水酸基より高い
のは、C-1のaxial配向したOCH₃のOとC-2の
equatorial配向したOHのH間で分子内水素結合
が可能であり、この静電気子局在化により反応性が
高められると考えられる。

メチルβ-D-キシロピラノノド（3.11）の選択的
2モルペンゾイアル化反応7) では、2,3,4-トリペン
ゾエート（3.12, 17%), 2,4-ジペンゾエート（3.
平成8年12月（1996年）

<table>
<thead>
<tr>
<th>3.11</th>
<th>3.12</th>
<th>3.13</th>
<th>3.14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13, 22%) 2, 3-ジベンソエート (3.14, 37%), 3, 4-ジベンソエート (3.15, 16%), 3-ベンゾエート (3.16, 4%), 4-ベンゾエート (3.17) と 2-ベンゾエート (3.18) の混合物 (4%) が得られる。選択的 1 モルベンゾイル化反応7) では、2, 3, 4-トリベンゾエート (3.12, 2%), 2, 4-ジベンゾエート (3.13, 8%), 2, 3-ジベンゾエート (3.14) と 3, 4-ジベンゾエート (3.15) の混合物 (19%), 3-ベンゾエート (3.16, 25%), 4-ベンゾエート (3.17, 20%), 2-ベンゾエート (3.18, 26%) を得る。これらの結果より、δ-キシロースの β-糖体における二級水酸基のベンゾイル化反応に対する相対的反応性の順序は、1 モル反応、2 モル反応とも、HO-2 > HO-3 > HO-4 であると考えられる。この結果は、opt α-糖体のそれとは異なるものであり、C-1 位のアグリコンの配向の違いが反応性に大きな影響を与えていることを示唆している。3-ベンゾエート (3.16) の 1 モルベンゾイル化反応7) では、2, 3-ジベンゾエート (3.14) と 3, 4-ジベンゾエート (3.15) の比が 4:1 の混合物が得られるので、β-糖体の 2 モルベンゾイル化反応では HO-2 > HO-4 であることは明らかである。このことは、β-糖体では C-1 の OCH₃ が equatorial に配向しているので、隙接の equatorial 水酸基は木素結合の可能性が極めて低いと考えられるから、equatorial に配向するアグリコンである OCH₃ が木素結合以外の機構（例えば静電子的相互作用）で隙接水酸基の反応性を高めるものと推定される。

一方、他のスルフォニル化の報告についてみてみると、メチル α-D-キシロピラノンド (3.6) と 2 モル当量の methanesulfonyl chloride (メタンスルフォニルクロリド）との反応8) では、主生成物は 2, 4-ジスルフォネート (3.20) で得られている。1 モル当量のメタンスルフォニルクロリドおよび p-トルエンスルフォニルクロリドとの反応9) では、主生成物として 2-スルフォネート (3.23) が、副生成物として 4-スルフォネート (3.24) が得られている。2 モル当量の p-トルエンスルフォニルクロリドを用いた詳細な実験10) での生成物のモル比は、2, 3-4-トリスルフォネート (3.19, 8.7%), 2, 4-ジスルフォネート (3.20, 70.3%), 2, 3-ジスルフォネート (3.21, 10.2%), 2-スルフォネート (3.23, 10.8%) である。また、1 モル当量の p-トルエンスルフォニルクロリドとの反応では、2, 4-ジスルフォネート (3.20, 11.6%), 2, 3-ジスルフォネート (3.21, 2.2%), 3-スルフォネート (3.22, 0.6%), 2-スルフォネート (3.23, 79.2%), 4-スルフォネート (3.24, 6.3%) が得られる。以上の結果を総合すると、α-D-配糖体のスルフォニル化では、その二級水酸基の相対的反応性の順序は、HO-2 > HO-4 > HO-3 であると考えられる。C-2 位の equatorial 水酸基は、隙接の C-1 に axial 配向したアグリコンが存在する場合、分子内水素結合が可能であり、電子の局在化がおこるため、その反応性が増加するため、最も反応性が高められるものと考えられる。次いで C-4 位の水酸基の反応性が高いのは、C-5 位のメチレン基の存在による立体障害性の低減のため、スルフォニル化の場合、試薬が gauche 相互作用のため立体障害性の高い C-3 位の水酸基に比べ立体障害性の低い C-4 位を容易に攻
録するためであると考えられる。

メチルβ-D-キシロピラノソース（3.11）の2モル当量のβトールエンスルフォニルクロリドとの反応では、2,3,4-トリスルフォネート（3.25, 15.5%), 2,4-ジスルフォネート（3.26, 33.8%), 3,4-ジスルフォネート（3.27, 19.5%), 4-スルフォネート（3.28, 31.2%)が得られている。生成するジスルフォネート内では2,4-ジスルフォネートが生成物であり、また、モノスルフォネートでは4-スルフォネートが生成物である。

βトールエンスルフォニルクロリドに対するβ-3配糖体の水酸基の相対的反応性の順序は、HO-4 > HO-3 > HO-2 であると考えられる。メタンスルフォニルクロリドに対する水酸基の相対的反応性の順序については、HO-4 > HO-3 > HO-2 という幾分対照的な結果が得られている。これは導入される置換基の立体的な影響がそれぞれ異なるためであろう。HO-4の反応性が最も高いのは、β-D-配糖体ではC-1のアグリコンであるメチル基はequatorial配向をとるため分子内に水素結合は存在せず、そのため立体的に有利な水酸基（HO-4）がより速くエステル化されるものと考えられる。C-3の水酸基のβトールエンスルフォニルクロリドに対する反応性はα- , β-配糖体のいずれにおいても最も低いものとなっている。
2. アラビノース配糖体のエステル化

アラビノピラノース配糖体の立体構造は先に述べた1,5-アンヒドロアラビノピラニトールに等しく、C-4位にaxial水酸基をもつが、C-1位にアグリコンをもつ点で異なる。アグリコンペンソクルリドによる反応では、主生成物は、2,3-ジェステル（3.32または3.33）であり、収率はそれぞれ65, 66%と報告されている。また、全ての水酸基が3.29と同じ立体配座をとると考えられるメチルβ-D-アラビノピラノリド（3.30）についても、少量の2,4-ジペンゾ酸エート（3.31, 8%）と共に2,3-ジェペンゾ酸エート（3.33, 61%）が主に生成していると報告されている。メチルβ-D-アラビノピラノリド（3.30）については、さらに詳細な選択的ペンゾ酸化応応が報告されている。その2モル反応では、2,4-ジペンゾ酸エート（3.31, 36%）、2,3-ジペンゾ酸エート（3.34, 13%）、4-ペンゾ酸エート（3.35, 3%）、3-ペンゾ酸エート（3.36, 4%）を与え、また、1モル反応では、2,4-ジペンゾ酸エート（3.31, 2%）、2,3-ジペンゾ酸エート（3.33, 17%）、2-ペンゾ酸エート（3.34, 58%）、4-ペンゾ酸エート（3.35, 21%）、3-ペンゾ酸エート（3.36, 2%）が生成する。2モルペンゾ酸化応応において、2,3-ジェペンゾ酸エートの収率が2,4-ジェペンゾ酸エートの収率を上回ること、3,4-ジェペンゾ酸エートの生成がみられないことなどから、2モルペンゾ酸化応応において、β-D-配糖体の水酸基の相対的反応性の順序は、HO-2＞HO-4＞HO-3となり、これはメチルα-D-キシロピラノリド（3.6）の2モルペンゾ酸化応応で得られた結果と同じであるが、1,5-アンヒドロアラビノピラニトールのペンゾ酸化応応の結果（HO-3＞HO-4＞HO-2）と異なる。1モルペンゾ酸化応応においても、2-ペンゾ酸エートが主生成物であり、4-ペンゾ酸エートが3-ペンゾ酸エートの収率を極く僅か上回っているので、相対的反応性的順序は、2モル反応と同じようにHO-2＞HO-4＞HO-3となり、このC-2位の水酸基の高い反応性は、分子内水素結合の寄与によるものと説明される。ペンゾ酸化応応によるエステル化応応では、C-1の配糖体部分（アグリコン：メチル基）がaxialに配向する場合には、メチルα-D-キシロピラノリドと同様に、C-3位のequatorial配向水酸基に対して、立体障害をもたらす結果、ペンゾ酸化応応速度を低下させるものと考えられる。

メチルα-D-アラビノピラノリド（3.37）についての選択的2モルペンゾ酸化応応では、2,3-ジェペンゾ酸エート（3.38, 18%）、2,4-ジェペンゾ酸エート（3.39, 1%）、3,4-ジェペンゾ酸エート（3.40, 25%）、2,3-ジェペンゾ酸エート（3.41, 35%）、3-ペンゾ酸エート（3.42, 20%）、4-ペンゾ酸エート（3.43, 1%）が生成する。2,3-ジェペンゾ酸エートの収率が3,4-ジェペンゾ酸エートのそれを上回ること、さらにモノペンゾ酸エートの内で3-ペンゾ酸エートが主生成物であり、
2-ベンゾエートが生成しないので、2-メルベンゾイ化反応におけるα-l-配糖体の水酸基の相対的反応性の順序は、HO-3 > HO-4 > HO-2 となる。また、1 モル反応では、2,3,4-ジベンゾエート（38・微量）、2,4-ジベンゾエート（3.37・微量）、3,4-ジベンゾエート（3.40・8%）、2,3-ジベンゾエート（3.41・14%）、3-ベンゾエート（3.42・59%）、4-ベンゾエート（3.43・19%）が生成する。モノペンゾエートの中で3-ペンゾエートが主生成物であり、次いで4-ペンゾエート多く、2-ペンゾエートが生成しないこと、ジペンゾエートの中で、2,3-ジペンゾエートが主生成物であることから、2-メルペンゾイ化反応におけるα-l-配糖体の水酸基の相対的反応性の順序は、HO-3 > HO-4 > HO-2 となり、2 モル反応の場合と一致する。このことは、α-l-配糖体ではペンゾイ化反応の1 モル反応（第1段階）と2 モル反応（モノペンゾエートの1 モル反応：第2段階）での水酸基の相対的反応性の順序は変わらないことを示している。これらの結果は、1,5-アシヒドロアラビトールの結果と一致しており、これはα-l-配糖体では分子内水酸結合が存在せず、また、アグリコン（C-1位のメチル基）がequatorial配向のため立体障害を水酸基に与えないためであろう。

一方、p-トルエンスルフェート化反応について、メチルβ-アラビトロピラノンド（3.37）の2 モル反応では、2,3,4-トリフルーテート（3.44・9%）、2,4-ジフルーテート（3.45・11%）、2,3-ジフルーテート（3.46・68%）、2-シフルーテート（3.47・10%）、4-シフルーテート（3.48・2%）が生成する。生成したジフルーテートの内で、2,3-ジフルーテートが主生成物で、3,4-ジフルーテートが生成しなかったことから、α-l-配糖体の2 モルスルフェート化における水酸基の相対的反応性の順序は、HO-2 > HO-3 > HO-4 と考えられる。また、β-配糖体の1 モル p-トルエンスルフェート化では、2,4-ジフルーテート（3.45・1%）、2,3-ジフルーテート（3.46・24%）、2-シフルーテート（3.47・73%）、4-シフルーテート（3.48・2%）が得られる。2-シフルーテートの高収率と4-シフルーテートの低収率および3-シフルーテートが生成しなかったことから、β-配糖体の1 モルスルフェート化における水酸基の相対的反応性の順序は、先に述べた選択的ベンゾイ化反応と同じ HO-2 > HO-4 > HO-3 と考えられる。この結果は、C-1 位のメチル基と C-2 位の水酸基間の強い分子内水酸結合の静電的影響を受けて、C-1 位の水酸基の反応性が最も高くなったと考えると、1,5-アシヒドロアラビトールのそれと一致するものである。1 モル反応と2 モル反応での相対的反応性の順序の違いがあるが、これは、さらに主生成物である2-シフルーテートを選択的 p-トルエンスルフェート化することで説明される。そのスルフェート化では2,4-ジフルーテートと2,3-ジフルーテートが1 : 3 の割合で生成する。また、メチル2-O-ペンゾイル-β-l-アラビトロピラノンドの1 モル反応では、主生成物として3-シフルーテート（81%）が生成する。これらのことは、2 モルスルフェート化（反応の第2段階）において、反応性の順序は HO-3 > HO-4 であることを示し、2 モル反応でのジフルーテート

\[
\begin{align*}
\text{OH} & \quad \text{OCH}_3 \\
\text{OH} & \quad \text{OCH}_3 \\
\text{3.37} & \\
\text{OBz} & \quad \text{OCH}_3 \\
\text{OBz} & \quad \text{OCH}_3 \\
\text{3.38} & \\
\text{OBz} & \quad \text{OCH}_3 \\
\text{OBz} & \quad \text{OCH}_3 \\
\text{3.39} & \\
\text{OBz} & \quad \text{OCH}_3 \\
\text{OBz} & \quad \text{OCH}_3 \\
\text{3.40} & \\
\text{OBz} & \quad \text{OCH}_3 \\
\text{OBz} & \quad \text{OCH}_3 \\
\text{3.41} & \\
\text{OBz} & \quad \text{OCH}_3 \\
\text{OBz} & \quad \text{OCH}_3 \\
\text{3.42} & \\
\text{OBz} & \quad \text{OCH}_3 \\
\text{OBz} & \quad \text{OCH}_3 \\
\text{3.43} &
\end{align*}
\]
ネットの収率結果（2,3-ジスルホネート → 2,4-ジスルホネート）と一致する。これは2-スルホネートのC-3とC-4位の水酸基のスルホミル化の第2段階とメチルβ-L-アラビノピラノシドのC-3とC-4位の水酸基のスルホミル化の第1段階で、それぞれの水酸基の反応速度が逆転することを示している。

メチルα-L-アラビノピラノシド (3.37) の2モルスルフミル反応では、3,4-ジスルフネート (3.49, 85%), 3-スルフネート (3.50, 12%), 4-スルフネート (3.51, 3%), 2-スルフネート (3.52, 3%) の収率が得られる。また、1モルα-チュールスルフミル化では、3,4-ジスルフネート (3.49, 85%), 3-スルフネート (3.50, 12%), 4-スルフネート (3.51, 9%), 2-スルフネート (3.52, 25%) の収率が得られる。2モル反応において、生成したスルフネートの収率は3,4-ジスルフネートで最も高く、生成したモノスルフネートが高収率で得られることから、2モル反応における水酸基の相対的反応性の順序は、
HO-3 > HO-4 > HO-2 となるものと考えられる。1 モル反応においては、3-スルフォネートが最高収率で、また、モノスルフォネートの各収率より、1 モル反応における水酸基の相対的反応性の順序は、HO-3 > HO-4 > HO-2 となり、2 モル反応での順序と同じで結果が得られる。C-2 位の水酸基の反応性が低下したのは、β-配糖体では、C-1 位 (OCH₃) と C-2 位 (OH) 間に分子内水素結合が存在しないためだと考えられる。1,5-アノヒドロアラビトールの 1 モルスルフォネート化の結果 (HO-4 > HO-3 > HO-2) と比較すると、equatorial 配向のメチル基は axial 配向のメチル基と異なり、axial 配向の水酸基の反応性を低下させるものと思われる。

3. リキソースおよびリボース配糖体のエステル化
リキソースは、天然界にはほとんど存在しない希少糖であり、その構造は、C-2 位に axial 水酸基をもつマンノースの C-5 位のヒドロキシメチル基を取り去ったものに等しい。二級水酸基のうち C-2 位の水酸基が axial 配向した構造で、HO-2 と HO-3 間で分子内水素結合が可能であり、equatorial 配向した C-3 位の水酸基の反応性が C-2 のそれより高いと予測される。メチル-リキソビラノノン (3.53) の 1 モルペンソイル化反応の 5 のみが知られているが、3-ペンソイル (3.54) が 46% の収率で単離されており、C-3 位の水酸基の反応性が最も高いと推定される。

最後に残りの C-3 位に axial 水酸基をもつリボース配糖体についてであるが、これまでのところ選択的エステル化についての報告はない。これはリボース（例：α-D-リボピラノース、3.55）自体が構造安定性からフライアース（五員環）で存在するので、C-1 への保護基の導入に対してもピラノース（六員環）誘導体を合成するのが困難であるためであろう。

IV. おわりに
これまで二回に分けて、糖類水酸基の選択的エステル化反応について述べた。反応機構については前回に述べた理論を重複するので、今回は簡潔に斬新してかなりの部分を省略し、幾分解釈のないまま専門語句のみを記述したことをお詫びし顧いだ。

文 献
1) 近藤陽太郎：京都女子大学食物学会誌，49，15 (1994)
14) 園部浩子：京都女子大学家政学部食物栄養学科卒業論文，(1995)